Prostate cancer (PCa) is a difficult disease to understand. The tumor's genetic diversity increases as mutations accumulate, resulting in distinct subclones. Non-genetic intra-tumoral heterogeneity, the cellular differentiation state, and the interaction between subclonal evolution and transcriptional heterogeneity are poorly understood. The authors performed single-cell RNA sequencing on 14 untreated PCa patients in this study. They developed a comprehensive cell atlas of PCa patients and mapped developmental states onto tumor subclonal evolution. They found distinct subclones in PCa patients and then divide tumor cells into four transcriptional subtypes: EMT-like (subtype 0), luminal A-like (subtype 1), luminal B/C-like (subtype 2), and basal-like (subtype 3). These subtypes are organized hierarchically into stem cell-like and differentiated states. Surprisingly, multiple subclones within a single primary tumor have distinct preferential subtype combinations. Furthermore, subclones exhibit varying levels of communication with other cell types within the tumor ecosystem, which may modulate the distinct transcriptional subtypes of the subclones. Notably, they discovered that tumor cell transcriptional heterogeneity and cellular ecosystem diversity correlate with features of a poor prognosis by integrating TCGA data. Their research examines subclonal and transcriptional heterogeneity and its implications for patient prognosis.
Which is the Best Method for HLA Typing?March 11, 2024In the realm of immunogenetics, the significance of Human Leukocyte Antigen (HLA) typing cannot be overstated. It plays a pivotal role in various medical and research applications, including organ tra...view
What is a PCR Machine?November 8, 2024A PCR machine, also known as a thermocycler or thermal cycler, is an essential tool in molecular biology used to amplify small segments of DNA or RNA. These devices, also referred to as PCR systems, c...view
Exploring the Benefits of Genome Sequencing ServicesJune 26, 2023Genome sequencing services have revolutionized the field of genetics and healthcare by providing valuable insights into our genetic makeup. With advancements in technology, it is now possible to decod...view
Working Principle of Deep-Analysis DNA Microarray TechnologyApril 10, 2024As an important tool in modern biotechnology, DNA microarray scanners play a vital role in genomics, disease diagnosis, drug research and development, and other fields. They can achieve rapid and accu...view