Prostate cancer (PCa) is a difficult disease to understand. The tumor's genetic diversity increases as mutations accumulate, resulting in distinct subclones. On the other hand, non-genetic intra-tumoral heterogeneity, the cellular differentiation state, and the interaction between subclonal evolution and transcriptional heterogeneity, on the other hand, are poorly understood. The authors performed single-cell RNA sequencing on 14 untreated PCa patients in this study. They developed a comprehensive cell atlas of PCa patients and mapped developmental states onto tumor subclonal evolution. They find distinct subclones in PCa patients and then divide tumor cells into four transcriptional subtypes: EMT-like (subtype 0), luminal A-like (subtype 1), luminal B/C-like (subtype 2), and basal-like (subtype 3). These subtypes are organized hierarchically into stem cell-like and differentiated states. Surprisingly, multiple subclones within a single primary tumor have distinct preferential subtype combinations. Furthermore, subclones exhibit varying levels of communication with other cell types within the tumor ecosystem, which may modulate the distinct transcriptional subtypes of the subclones. Notably, they discovered that tumor cell transcriptional heterogeneity and cellular ecosystem diversity correlate with features of a poor prognosis by integrating TCGA data. Their research examines subclonal and transcriptional heterogeneity and its implications for patient prognosis.
What Is The Most Accurate Alcohol Metabolism Test?March 11, 2024In the intricate domain of diagnostic testing, the quest for accuracy and reliability is perpetual. Among the myriad of tests, those aimed at deciphering alcohol metabolism stand out for their critica...view
Why Choose Microarrays over Other Technologies?November 10, 2023Microarrays are becoming an increasingly popular choice for biologists and researchers worldwide. With the help of advanced technology, these arrays provide a cost-effective and efficient way to analy...view